


Direct Synthesis of Pentafluoroethyl Copper from Pentafluoropropionate as an Economical C₂F₅ Source: Application to Pentafluoroethylation of Arylboronic Acids and Aryl Bromides

Hiroki Serizawa, Kohsuke Aikawa, and Koichi Mikami*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Supporting Information

ABSTRACT: The direct synthesis of pentafluoroethyl copper (CuC_2F_5) from a cuprate reagent and ethyl pentafluoropropionate as one of the most economical and useful pentafluoroethyl sources was accomplished. The advantages of this method are; all the reagents employed are low-cost and operationally simple, and the CuC_2F_5 reagent is prepared in virtually quantitative yield. Furthermore, the CuC_2F_5 reagent prepared was successfully applied to two types of pentafluoroethylations with arylboronic acids and aryl bromides to provide the pentafluoroethylated aromatic products in good-to-excellent yields, including large scale operations.

ecause the introduction of fluorine into organic molecules ecause the introduction of matrix. increased chemical and metabolic stability, enhanced lipophilicity, and changed polarity, the efficient fluorinations and fluoroalkylations play an important role in the development of new pharmaceuticals and agrochemicals.² Over the past five years, considerable progress has been accomplished in the transition-metal-mediated and -catalyzed trifluoromethylation of the aromatic system using various trifluoromethylating reagents.³ However, the perfluoroalkylations of aromatic compounds are still undeveloped, compared to the corresponding trifluoromethylations. 2a,c The Swarts reaction, 4 which can industrially produce the trifluoromethylated aromatic compounds by treatment of HF or SbF₃, cannot be applied to the preparation of the perfluoroalkylated aromatic compounds, such as the pentafluoroethylated ones. Especially, the development of practical and reliable pentafluoroethylations of aromatic compounds is strongly desirable, because few biologically active compounds containing the pentafluoroethyl (C2F5) group, as shown in the angiotensin II receptor antagonist (DuP 532)⁵ and antihypertensive K+ channel opener (KC-515),6 have been reported to date (Figure 1).

As a synthetic method for pentafluoroethylated aromatic compounds, the copper-mediated pentafluoroethylation of aryl iodide with CuI, C₂F₅SiMe₃, and KF was reported by Fuchikami,

Figure 1. Biologically active compounds with C_2F_5 group.

but the scope of substrates in the reaction was quite limited.⁷ Recently, Hartwig demonstrated that stable (phen)CuC₂F₅ prepared and isolated from [CuOtBu]₄ and C₂F₅SiMe₃ was efficient for pentafluoroethylations of arylboronate esters and heteroaryl bromides.⁸ However, perfluoroalkylsilane sources such as C₂F₅SiMe₃ are costly for large scale operation, despite its commercial availability. Grushin has recently disclosed that the ligandless CuC₂F₅ reagent in situ prepared by the direct cupration of economical C₂F₅H reacted with not only aryl iodides but also unactivated aryl bromides to provide the corresponding pentafluoroethylated products in excellent yields.^{9,10} Daugulis has also succeeded in the copper-catalyzed pentafluoroethylation of ethyl-2-iodobenzoate via the *in situ* preparation of $Zn(C_2F_5)_2$ from TMP_2Zn and C_2F_5H . In these methods, the intrinsic drawback that gaseous C₂F₅H possesses (boiling point: -48.5 °C) is hard to handle in common academic laboratories, and thus widespread synthetic applications are restricted. As an alternative approach, pentafluoroethylation of aryl iodides with CuC₂F₅ formed via decarboxylation of low-cost and easy-to-handle alkali metal pentafluoropropionates or methyl pentafluoropropionate, which are one of the most useful C_2F_5 sources, has been reported. However, in this method, the too high reaction temperature (150-180 °C) facilitating the decarboxylation causes functional group incompatibility. Thus, the development of practical and reliable pentafluoroethylation processes in the aromatic system with a broad substrate scope still remains a challenge. Herein, we describe that the CuC₂F₅ reagent from cuprate and pentafluoropropionate derivatives could be prepared under mild conditions in almost quantitative yield, and consequently pentafluoroethylations of arylbronic acids and aryl bromides with the CuC₂F₅ reagent obtained proceeded to

Received: May 12, 2014 Published: June 13, 2014 **Organic Letters** Letter

give the pentafluoroethylated aromatic compounds in good-toexcellent yields. The noteworthy advantages of this reaction system are a cost-efficient access to the CuC₂F₅ reagent, broad substrate scope, and applicability for large-scale operation.

Recently, we disclosed the direct synthesis of the CuCF₃ reagent from cuprate and 2,2,2-trifluoroacetophenone and its application to three types of trifluoromethylations with arylbronic acids, aryl iodides, and terminal alkynes. 14 Therefore, this synthetic method was expected to be applicable to prepare various perfluoroalkyl copper reagents. In fact, it was found that the combination of pentafluoroethyl ketone 1a and the cuprate, $K[Cu(O^tBu)_2]$, generated from CuCl (1 equiv) and KO^tBu (2 equiv), could lead to the CuC₂F₅ reagent in 71% yield (Table 1,

Table 1. Preparation of Pentafluoroethyl Copper Reagents from Cuprate and Pentafluoroethyl Ketone and Ester

	CuCl	1) KO ^f Bu (2 equiv) DMF, rt, 1 h	2) R _F R 1 (1 equiv) rt, 1 h	CuR _F
entry		R_F	R	yield $(\%)^b$
1		C_2F_5	Ph (1a)	71
2		C_2F_5	OEt (1b)	77
3		$^{n}C_{3}F_{7}$	Ph (1c)	0
4		${}^{n}C_{6}F_{13}$	Ph (1d)	0
5		$^{n}C_{\circ}F_{17}$	Ph (1e)	0

^aConditions: After treatment of CuCl (0.5 mmol) and KO^tBu (1.0 mmol) in DMF (1.0 mL) at rt for 1 h, 1 (0.5 mmol) was added to the DMF solution at the same temperature. b Yield was determined by 19 F NMR analysis using benzotrifluoride (BTF) as an internal standard.

entry 1). Encouragingly, the yield was slightly improved when ethyl pentafluoropropionate 1b, which is more economical as a C₂F₅ source, was employed (entry 2). However, surprisingly, the formation of the copper reagents bearing longer chain perfluoroalkyl groups ("C₃F₇-, "C₆F₁₃-, and "C₈F₁₇-) from perfluoroalkyl ketones 1c-e was not observed under the same reaction conditions (entries 3-5). 16

In order to increase the yield of the CuC₂F₅ reagent, we attempted to optimize the reaction conditions for its best preparation (Table 2). Treatment of 1a at lower temperature gave $\sim 90\%$ yields (entries 1-2). Significantly, 1b led to the CuC_2F_5 reagent in almost quantitative yield (>95%) (entry 3), while a higher temperature (50 °C) was required with the aim of facilitating not only the addition of cuprate to 1b with lower electrophilicity but also the transformation from more stable tetrahedral intermediate A' to the CuC₂F₅, compared to the case of 1a (see Scheme 1, eq 2). This is in sharp contrast to our previous results on the synthesis of the CuCF₃ reagent, 14 in which the decomposition of CuCF₃ was observed even at 50 °C to decrease its overall production. Moreover, it was found that the CuC₂F₅ was stable without decomposition even at 90 °C. When DMPU was used instead of DMF, a high yield was maintained under the same reaction conditions (entry 4). The employment of DMA resulted in a lower yield (entry 5), and no product was obtained in THF (entry 6). Notably, the cuprate generated from NaO^tBu or LiO^tBu can also be applicable to the reaction, despite the longer reaction time (entries 7-8). Unfortunately, the formation of the CuC₂F₅ was not observed from pentafluoropropionic anhydride 1f and potassium pentafluoropropionate 1g (entries 9–10).

Our previous research indicated the reaction mechanism includes perfluoroalkyl coppers being directly formed via the

Table 2. Preparation of Pentafluoroethyl Copper Reagent Using Various Pentafluoroethyl Sources^a

	1)		2)			
	CuCl ———	u (2 equiv) nt, rt, 1 h	C₂F₅ R X °C,	1 (1 equiv) Y h	Cu C₂F₅	
entry	R	M	solvent	X	Y	yield $(\%)^b$
1	Ph (1a)	K	DMF	0	0.5	92
2		K	DMF	-10	0.5	89
3	OEt (1b)	K	DMF	50	0.5	>95
4		K	DMPU	50	0.5	92
5		K	DMA	50	0.5	52
6		K	THF	50	0.5	0
7		Na	DMF	50	2	>95
8		Li	DMF	50	4	75
9	$OCOC_2F_5$ (1f)	K	DMF	50	0.5	0
10	OK (1g)	K	DMF	50	0.5	0

^aConditions: After treatment of CuCl (0.5 mmol) and KO^tBu (1.0 mmol) in solvent (1.0 mL) at rt for 1 h, pentafluoroethyl source 1 (0.5 mmol) was added to the solution, and then the solution was stirred at X °C for Y h. bYield was determined by 19F NMR analysis using benzotrifluoride (BTF) as an internal standard.

Scheme 1. Isolation of Compounds 2, 3, and 4

$$K[Cu(O'Bu)_{2}] \xrightarrow{1a \ (1 \ equiv)} Ph \\ -40 \ ^{\circ}C, \ 30 \ min \\ X \ ^{\circ}C$$

tetrahedral intermediate A $(M = K \text{ or } Cu \text{ or } CuO^tBu).^{14}$ Therefore, we tried to trap the tetrahedral intermediate A (R =Ph) by addition of TMSCl to give the O-silylated product 2 in 71% yield (Scheme 1, eq 1). Under the optimized reaction conditions (Table 2, entries 1 and 3), tert-butyl benzoate 3 and tert-butyl ethyl carbonate 4 generated through the tetrahedral intermediate A' were also isolated in 94% and 74% yields, respectively (Scheme 1, eq 2).

To test the usefulness of the CuC₂F₅ reagent in situ prepared from 1b in DMF, we explored the representative reaction providing the perfluoroalkylated aromatic ring, ^{2a,c} the oxidative pentafluoroethylations of arylboronic acids¹⁷ (Table 3). Initially, it was found that the desired coupling product 6a was produced in 20% yield, when the reaction was conducted by treatment of arylboronic acid **5a**, CuC_2F_5 (2 equiv, ~0.5 M in DMF), and air (1 atm) as an oxidant in toluene at rt for 3 h (entry 1). The inefficiency of the reaction stemmed from the competing reaction between 5a and remaining MO^tBu in preparation of the CuC_2F_5 reagent to produce a *tert*-butoxylated side product (4-*tert*-butoxy nitrobenzene) in 47% yield. ^{9,10d} Therefore, the neutralization of remaining MO^tBu by the addition of Et₃N·HCl dramatically enhanced the yields of product 6a (entries 2-4). Further improvement by using Et₃N·3HF was accomplished to provide the product 6a in 83%-90% yields following Grushin's protocol^{9,10} (entries 5–7). With HCl in Et_2O , the yield was decreased, compared to that of Et₃N·3HF (entry 8).

Organic Letters Letter

Table 3. Effect of Acids for Neutralization^a

$$O_2N \xrightarrow{\text{Sa}} \begin{array}{c} B(\text{OH})_2 \\ + C_2C_2F_5 \\ (2 \text{ equiv}) \\ \text{remaining MO'Bu} \\ \text{neutralized by $acid$} \end{array} \xrightarrow{\text{toluene in air}} O_2N \xrightarrow{\text{Ga}} G_2F_5$$

entry	M	acid	yield $(\%)^b$
1	K	_	20
2	K	Et ₃ N·HCl (2.4 equiv)	76
3	Na	Et ₃ N·HCl (2.4 equiv)	67
4	Li	Et ₃ N·HCl (2.4 equiv)	62
5	K	Et ₃ N·3HF (0.8 equiv)	84
6	Na	Et ₃ N·3HF (0.8 equiv)	90
7	Li	Et ₃ N·3HF (0.8 equiv)	83
8	K	HCl in Et ₂ O (2.4 equiv)	67

"Conditions: 5a~(0.1~mmol) and CuC_2F_5 reagent (0.2~mmol) in air (1~atm) in toluene (1~mL) at rt for 3~h. CuC_2F_5 reagent, which was prepared from CuCl, MO'Bu, and ethyl pentafluoropropionate in DMF, was neutralized by acid before being used in the reaction. "Yield was determined by ^{19}F NMR analysis using benzotrifluoride (BTF) as an internal standard.

Under the optimized reaction conditions in hand, penta-fluoroethylation of various boronic acids 5 with the CuC_2F_5 reagent without any ligands, such as 1,10-phenantroline and 2,2′-bipyridine, was examined (Scheme 2). A wide range of

Scheme 2. Pentafluoroethylation of Arylboronic Acids^a

"Conditions: 5 (0.1 mmol) and CuC_2F_5 reagent (0.2 mmol) in air (1 atm) in toluene (1 mL) at rt for 3 h. Yield of the isolated product after column chromatography. CuC_2F_5 reagent (2 equiv), which was prepared from CuCl, KO^tBu , and ethyl pentafluoropropionate in DMF, was neutralized by $Et_3N\cdot 3HF$ (0.8 equiv) before being used in the reaction. ^b Yield was determined by ¹⁹F NMR analysis using (trifluoromethoxy)benzene as an internal standard. ^c CuC_2F_5 reagent of 4 equiv was used.

electronically varied arylboronic acids underwent this oxidative reaction in good-to-excellent yields with high efficiency. A methyl substituent on the *ortho*-position of **5g** did not interfere with the reaction. The use of **5h** bearing a formyl group also led to the corresponding product **6h** in high yield but did not give the pentafluoroethylated alcohol at all. Moreover, the formation of **6i** with intact bromide in high yield could provide a convenient platform for further functionalization. The reactions of vinylbronic acid **5j** and naphthylbronic acid **5k** with the backbone of Me-protected **2**,2′-binaphthol also proceeded smoothly in excellent yield.

Additionally, the CuC₂F₅ reagent prepared by our method was successfully applied to pentafluoroethylation with aryl bromides which are more economical and useful but less reactive than aryl

iodides, while the reaction mixture needed to be heated up to 90 °C with the aim of gaining high conversion (Table 4). In contrast

Table 4. Effect of Additional Bases and Acids^a

entry	M	acid	yield $(\%)^b$
1	K	-	12
2	K	Et ₃ N·HCl (2.4 equiv)	33
3	Na	Et ₃ N·HCl (2.4 equiv)	44
4	Li	Et ₃ N·HCl (2.4 equiv)	32
5	K	Et ₃ N·3HF (0.8 equiv)	44
6	Na	Et ₃ N·3HF (0.8 equiv)	95
7	Li	Et ₃ N·3HF (0.8 equiv)	75

"Conditions: 7d (0.2 mmol) and CuC₂F₅ reagent (0.4 mmol) at 90 °C for 48 h. CuC₂F₅ reagent, which was prepared from CuCl, MO^tBu, and ethyl pentafluoropropionate in DMF, was neutralized by acid before being used in the reaction. ^bYield was determined by ¹⁹F NMR analysis using benzotrifluoride (BTF) as an internal standard.

to the case of arylboronic acids, the reaction was found to be extremely sensitive to not only additional acids but also the metal cation (K, Na, and Li) of the remaining bases (MO^tBu) in preparation of the CuC₂F₅ reagent. Initially, the reactions in the presence of each of metal cation led to low yields of the product, whether Et₃N·HCl as an acid was used or not (entries 1–4). The reaction with Et₃N·3HF for neutralization of KO^tBu also resulted in a low yield (entry 5); however, switching KO^tBu to NaO^tBu dramatically increased the reactivity to give the desired product 8d in 95% yield (entry 6). In the presence of the Li cation, the yield was moderate (entry 7). While the influence of the metal cation on the product yields was not well understood, the change in solution phases from heterogeneous to homogeneous was observed on addition of Et₃N·3HF when NaO^tBu was used for preparation of the CuC₂F₅ reagent (entry 6). Contrary to NaO^tBu, the CuC₂F₅ solution prepared with KO^tBu or LiO^tBu remained heterogeneous so that KF or LiF settled at the bottom of the flask, even after the addition of Et₃N·3HF (entries 5 and 7).

The CuC_2F_5 reagent was useful for pentafluoroethylation with a variety of aryl bromides 7 under the optimized conditions, providing the pentafluoroethylated aromatic compounds in good-to-excellent yields (Scheme 3). In general, it was found that aryl bromides 7c, 7e, and 7g with electron-donating substituents showed lower reactivity than 7a—b and 7h—i with electron-withdrawing substituents. Quinoline 7f, uracil 7j derivatives, and vinyl bromide 7k were also successfully pentafluoroethylated by the CuC_2F_5 reagent. Importantly, free hydroxyl functionality of 3,3′-Br-BINOL 7l was compatible with the reaction.

It is valuable that these reactions could be successfully employed in a gram scale synthesis for two types of pentafluoroethylation, thus affording a practical and reliable access to pentafluoroethylated aromatic compounds (Scheme 4, eqs 3 and 4). Under the optimized reaction conditions, the reaction with arylbronic acid 5d (2.1 g, 10 mmol) proceeded to isolate the product 6d in 84% yield (2.4 g, 8.4 mmol). In the reaction with aryl bromide 7i (scale: 2.2 g, 10 mmol), the product 8i was also isolated in 98% yield (2.6 g, 9.8 mmol).

In summary, we have succeeded in the direct synthesis of the CuC_2F_5 reagent from cuprate and ethyl pentafluoropropionate as

Organic Letters Letter

Scheme 3. Pentafluoroethylation of Aryl Bromides^a

"Conditions: 7 (0.2 mmol) and CuC_2F_5 reagent (0.4 mmol) at 80–90 °C for 24–72 h. Yield was determined by ¹⁹F NMR analysis using benzotrifluoride (BTF) or (trifluoromethoxy)benzene as an internal standard. CuC_2F_5 reagent (2 equiv), which was prepared from CuCl, NaO'Bu, and ethyl pentafluoropropionate in DMF, was neutralized by $Et_3N\cdot 3HF$ (0.8 equiv) before being used in the reaction. ^b Isolated yield. ^c CuC_2F_5 reagent (4 equiv) was used.

Scheme 4. Large-Scale Operation for Pentafluoroethylation

one of the most useful C_2F_5 sources. Compared with our previous work that the $CuCF_3$ reagent prepared from ethyl trifluoroacetate was obtained in $\sim\!60\%$ yield, ethyl pentafluoropropionate could lead to the CuC_2F_5 reagent in excellent yield even under large-scale operation. Furthermore, the CuC_2F_5 reagent prepared can be successfully applied to two types of pentafluoroethylations with arylboronic acids and aryl bromides to provide the pentafluoroethylated aromatic compounds in good-to-excellent yields, respectively.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mikami.k.ab@m.titech.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by Japan Science and Technology Agency (JST) (ACT-C: Creation of Advanced Catalytic Transformation for the Sustainable Manufacturing at Low Energy, Low Environmental Load) and The Noguchi Institute.

REFERENCES

- (1) (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications (2nd, completely revised and enlarged ed.); Wiley-VCH: Weinheim, 2013. (b) Petrov, V. A. Fluorinated Heterocyclic Compounds: Synthesis Chemistry and Applications; Wiley: Hoboken, NJ, 2009.
- (2) (a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (c) Landelle, G.; Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein J. Org. Chem. 2013, 9, 2476.
- (3) Recent selected examples: (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909. (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (c) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648. (d) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. (e) Tomashenko, O. A.; Escudero-Adán, E. C.; Belmonte, M. M.; Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655. (f) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95. (g) Nakamura, Y.; Fujiu, M.; Murase, T.; Itoh, Y.; Serizawa, H.; Aikawa, K.; Mikami, K. Beilstein J. Org. Chem. 2013, 9, 2404. (h) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.
- (4) (a) Swarts, F. Bull. Acad. R. Belg. 1892, 24, 309. (b) Filler, R. Adv. Fluorine Chem. 1970, 6, 1.
- (5) (a) Rita, H.-Y.; Lo, M.-W. *J. Chromatogr.* **1992**, *581*, 165. (b) Chiu, A. T.; Carini, D. J.; Duncia, J. V.; Leung, K. H.; McCall, D. E.; Price, W. A., Jr.; Wong, P. C.; Smith, R. D.; Wexler, R. R.; Timmermans, P. B. M. W. M.; Chang, R. S. L.; Lotti, V. J. *Biochem. Biophys. Res. Commun.* **1991**, *177*, 209.
- (6) (a) Taka, N.; Koga, H.; Sato, H.; Ishizawa, T.; Takahashi, T.; Imagawa, J. *Bioorg. Med. Chem.* **2000**, *8*, 1393. (b) Carmody, M.; Byrne, B.; Murphy, B.; Breen, C.; Lynch, S.; Flood, E.; Finnan, S.; Caffrey, P. *Gene* **2004**, 343, 107.
- (7) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91.
- (8) (a) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 3793. (b) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 536. (c) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett. 2014, 16, 1744.
- (9) Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584. (10) Preparation of the CuCF₃ reagent and its applications to various reactions: (a) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901. (b) Novák, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767. (c) Novák, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167. (d) Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adán, E. C.; Novák, P.; Grushin, V. V. J. Org. Chem. 2013, 78, 11126. (e) Konovalov, A. I.; Benet-Buchholz, J.; Martin, E.; Grushin, V. V. Angew. Chem., Int. Ed. 2013, 52, 11637.
- (11) Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286.
- (12) Preparation of the CuC_2F_5 reagent via generated thermal decomposition of $CuCF_3$: Kremlev, M. M.; Tyrra, W.; Mushta, A. I.; Naumann, D.; Yagupolskii, Y. L. J. Fluorine Chem. **2010**, 131, 212.
- (13) (a) Carr, G. E.; Chambers, R. D.; Holmes, T. F.; Parker, D. G. J. Chem. Soc., Perkin Trans. 1 1988, 921. (b) Freskos, J. N. Synth. Commun. 1988, 18, 965. (c) Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128, 1318. (d) Schareina, T.; Wu, X.-F.; Zapf, A.; Cotté, A.; Gotta, M.; Beller, M. Top. Catal. 2012, 55, 426.
- (14) Serizawa, H.; Aikawa, K.; Mikami, K. Chem.—Eur. J. 2013, 19, 17692.
- (15) The ¹⁹F and ¹³C NMR spectra of CuC₂F₅ obtained in DMF matched well with the spectra reported by Grushin; see ref 9.
- (16) Grushin has reported the same result that perfluoroalkyl copper reagents bearing longer chain perfluoroalkyl groups than the penta-fluoroethyl one could not be prepared from cuprate and the corresponding 1*H*-perfluoroalkanes; see ref 9.
- (17) (a) Chu, L.; Qing, F.-L. Org. Lett. **2010**, 12, 5060. (b) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. **2011**, 76, 1174.